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Abstract

The prevalence and cost of heart disease indicate the
need for better methods of detecting, diagnosing and
treating this pervasive problem. Appropriate monitor-
ing outside of the hospital can potentially lead to earlier
diagnosis and reduced costs. We use electrocardiogram
(ECG) and continuous arterial blood pressure (ABP)
data collected in an ambulatory setting to examine
two important cardiovascular quantities, namely cardiac
output (CO) and total peripheral resistance (TPR), over
a range of physical activities. CO and TPR can be esti-
mated from heart rate, pulse pressure and mean arterial
blood pressure, which in turn are directly obtained from
the ECG and ABP signals. More specifically, we em-
ploy a wearable cardiac and motion monitor designed
by colleagues at MIT to simultaneously record ECG
and 3-axis acceleration to onboard memory. The ac-
celeration data is used to generate an estimate of phys-
ical activity at each time point. Additionally, we use
a Portapres continuous blood pressure monitor to con-
currently record the ABP waveform. We present repre-
sentative results from data collected in a controlled am-
bulatory setting. Heart rate, mean ABP, CO and TPR
responses to physical activity are generally consistent
with what might be expected from cardiovascular phys-
iology. The longer-term challenge is to correlate the
dynamic behavior of these quantities with the state of
cardiac health.

Introduction

Background

Heart disease continues to be the leading cause of death in
the United States, with 26% of deaths attributed to it (Se-
belius, Frieden, and Sondik 2009). Recent estimates put
the cost of treatment at $475 billion annually (Lloyd-Jones,
Adams, and Brown 2010). The CDC reports that 81 million
adults in the United States have cardiovascular disease, and
6 million hospitalizations are attributed to it each year (CDC
2010).

One possibility for reducing costs while maintaining or
improving outcomes is more monitoring outside of the hos-
pital. Sensors suitable for ambulatory monitoring have im-
proved rapidly over the last several decades. Commercially
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available products include portable or wearable monitors
for electrocardiography (ECG), body movement, tempera-
ture, pulse oximetry, respiration, blood pressure, and glu-
cose (Brage et al. 2005; Papadopoulos, Crump, and Wilson
2010). With a variety of sensors available, and the promise
of more, it is becoming increasingly necessary to demon-
strate how such data, collected outside the clinical setting,
can be diagnostically useful.

We focus in this paper on ambulatory measurements of
ECG, motion, and arterial blood pressure (ABP), and on
physiological quantities derived from these measurements.

Essential Cardiovascular Physiology

Entire books are devoted to the exquisite physiology of the
cardiovascular system, but we must necessarily make do
with the briefest summary.

The electrical activity associated with the contractions
and relaxations of cardiac muscle on every heart beat is re-
flected — in a very distinctive and interpretable way — in
features of the ECG signal. These features repeat every heart
beat, so heart rate is quite easily determined from the ECG
signal. More subtle features of the ECG signal can also be
used to diagnose a variety of cardiac conditions.

The pumping heart constitutes a pulsating pressure source
that circulates blood through all parts of the body to sup-
port metabolism. The average rate of blood volume flowing
through the heart is the cardiac output, CO. Various neural,
hormonal and metabolic feedback control mechanisms act to
maintain blood pressure and flow sufficiently high to allow
proper perfusion of body tissues, and to keep CO matched
to metabolic needs.

A key neural control mechanism, acting on a time scale of
seconds, is the autonomic nervous system, involving action
of the sympathetic and parasympathetic nerves. This feed-
back pathway acts to modulate heart rate, cardiac contractil-
ity and the diameter — hence resistance to blood flow — of
the arterioles that feed the tissue capillaries. Arteriolar re-
sistance is also regulated by local metabolic needs, allowing
the most metabolically active tissues to receive the greatest
blood flow. The total peripheral resistance (TPR) is the net
resistance to flow seen by the heart, and is the ratio of mean
ABP to CO (in close analogy to electrical resistance, which
is the ratio of potential difference to current).

Physicians regularly — though often only implicitly —
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base clinical decisions on their assessments of the patterns of
variation in these related quantities. For instance, a drop in
mean ABP without a corresponding drop in CO may prompt
the prescription of a (vasopressor) drug to increase TPR and
thereby bring mean ABP back to acceptable levels.

Outline

Conventional clinical methods for measuring absolute CO,
such as thermodilution or ultrasound, are either invasive or
restrictive in methodology, and require expert operators with
specialized equipment. Since reliable absolute measure-
ments cannot generally be obtained outside a clinical set-
ting, little has been done to demonstrate how CO and TPR
are affected by normal physical activity.

Using ambulatory sensors, we estimate uncalibrated (i.e.,
relative, not absolute) versions of both quantities over a se-
ries of activities, in addition to obtaining an estimate of the
concurrent physical activity of the subject. From these three
estimates one can hope to eventually make inferences re-
garding the relative cardiac health of the subject.

The next section (under Methods) describes our data col-
lection setup and the computations used to estimate CO,
TPR and physical activity (PA). We then (under Results) de-
scribe representative measured data, as well as the CO, TPR
and PA waveforms estimated from this data. Specific discus-
sion of these waveforms and their relationships is contained
in the same section, while a broader examination of some
issues related to ambulatory monitoring is presented in the
last section of the paper (as Discussion).

Methods

Data Collection

We collected data from 10 subjects using an experimental
wearable ECG/accelerometer device designed by colleagues
at MIT, along with a Portapres blood pressure monitoring
system to record continuous ABP. The experimental monitor
is a low-noise, low-power device that attaches to ECG elec-
trodes placed on the chest; it can record data for up to two
weeks, and perform on-board processing of the data using a
Texas Instruments TI MSP 430 processor. The accelerome-
ter on the device is an Analog Devices ADXL345.

Wearing these sensors, the subjects were asked to perform
specific activities mimicking routine ambulatory activities.
These activities included 5 minutes lying down in the supine
position, 5 minutes sitting, 5 minutes standing, 1 minute
jumping, 1 minute of arm movement, a Valsalva (strain-
ing) maneuver, walking and running for 5 minutes each on a
treadmill, and stepping for 1 minute. The whole routine was
performed twice in succession, with a rest in between, in a
total of approximately 1.5 hours per subject.

Estimation

Various models and algorithms have been developed in the
literature for estimating CO and TPR from more readily ac-
cessible quantities such as heart rate and blood pressure.
One simple technique is based on the Windkessel model
(Parlikar et al. 2007). In this model, the stroke volume (i.e.,

blood volume ejected by the heart at each beat) is propor-
tional to the pulse pressure, which is the difference between
systolic (peak) and diastolic (valley) pressures on the ABP
waveform. Since CO is equal to the stroke volume times the
heart rate, CO is then proportional to the product of pulse
pressure and heart rate. We take this latter product, pulse
pressure times heart rate, as our uncalibrated CO estimate.
A quantity proportional to TPR can then be estimated by di-
viding mean ABP by our CO estimate, and this is our uncal-
ibrated TPR estimate. With the ABP waveform data from
the Portapres, we have both the pulse pressure and mean
pressure of each beat, as required to compute the above esti-
mates.

To estimate the demands on the cardiovascular system, we
estimate the physical activity (PA) of the subject using the
data from the accelerometer. We calculate the square root of
the sum of the variances of all three axes of acceleration, on
a sliding four-second window, to obtain an aggregate mea-
sure of activity. One limitation of this estimate is that the
accelerometer is on the chest, and therefore actually only
measures the activity of the torso.

Results

Figure 1: Sample accelerometer data over one entire set
of activities for the selected subject. The y-axis is force
measured in g’s, including gravitational acceleration. Each
shade represents a different axis of the accelerometer. Black
is the left to right axis parallel to the earth when standing.
Dark gray is the top to bottom vertical axis parallel to grav-
ity when standing. Light gray is the front to back axis par-
allel to gravity when lying on one’s back. The activities the
subject performs are noted on the bottom of the figure.

Raw Data

Figures 1-3 show the raw data taken from the sensors during
testing of a particular subject. Throughout this paper, we
present results for only this subject, for whom a relatively
noise-free recording was obtained over the entire duration
of the test. However, these results are fairly representative
of data from other subjects.
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Figure 2: Sample ECG data over a few seconds while the
subject was doing light exercise. The P-wave, QRS-complex
and T-wave are labeled for one beat.

Figure 3: Sample ABP data over a few seconds while the
subject was walking on the treadmill. The systolic and dias-
tolic pressures are labeled for one beat. The thick bar rep-
resents the pulse pressure (systolic minus diastolic) for that
particular beat. A pulse wave reflection is also labeled.

Figure 1 shows the three axes of accelerometry data over
the course of one full set of activities; the axes are de-
scribed in the figure caption. When the subject lies down
in the supine position, from an initial standing position at
the beginning of the data record, the light gray waveform
goes from 0 to 1g, because the associated axis went from
being orthogonal to gravity (while the subject stood up) to
being parallel to it (once the subject lay down). A subse-
quent spike in the accelerations shows the transition to sit-
ting. The waveforms during sitting are almost exactly like
the standing data that follows, except that the black wave-
form is slightly higher, probably because the subject was
slouching a little when sitting. The jumping activity intro-
duced force most particularly in the vertical direction, and
accordingly is picked up by the dark gray waveform that cor-
responds to this vertical axis. The arm movement resulted in
more force on the now-horizontal axis associated with the
light gray waveform. The increase in variation of the ac-
celerometer recordings is easily seen when the subject starts
walking, and is even more clear when the subject is running.
The increased variation reflects more force exerted by the

Figure 4: The top plot shows heart rate (beats per minute)
in black, and mean ABP (mmHg) in light gray. The bottom
plot shows our (uncalibrated) CO estimate in black, the as-
sociated (uncalibrated) TPR estimate in dark gray, and PA
in light gray, all without units. The estimates in the bottom
plot are based in part on the data shown in the top plot. Both
plots are on the same time scale.

body.
Figure 2 shows raw ECG data that was collected from

the experimental wearable device. There is some noticeable
high-frequency noise, probably due to muscle activity under
the electrodes; some low-frequency variation is also visible,
probably associated with movement of the electrodes due
to respiration. The R-wave is clearly distinguishable, and
“instantaneous” heart rate can be calculated easily from the
reciprocal of the interval between R-waves (the RR interval).

Figure 3 shows raw ABP data collected from the Finapres
while the subject was walking on the treadmill. The shape of
each beat is typical for an ABP waveform measurement. The
height of the sharp rise from diastole to systole is the pulse
pressure; the small bump after each systole is the reflected
pressure wave that travels back towards the heart from the
first major discontinuity in the arterial path. Some noise is
present, as indicated by the inconsistency of the reflected
pressure wave; this is likely a result of the subject walking.
Again, even in the presence of noise, it is easy to extract the
mean ABP and pulse pressure from the waveform.

Estimated CO, TPR and PA

The estimated values for CO, TPR and PA are plotted in Fig-
ures 4 and 5, along with the values for heart rate and mean
ABP which were used for the estimation. In this subsection
we will point out some of the interesting features of these
plots, and relate them to the underlying physiology.

Figure 4 shows an approximately 30-minute section of
data which included the most physical activity. When the
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subject begins jumping, noted by the sharp rise in PA around
1200 seconds, the CO rises and the TPR falls gradually.
After the subject stops, noted by the sharp fall in PA, the
CO quickly falls and the TPR rises more gradually. It ap-
pears that both do not just return to baseline, but overshoot
it slightly. The heart rate does not appear to react strongly to
this light activity, but it is evident that the mean ABP drops
after the exercise stops.

At around 1750 seconds the subject gets on the treadmill,
but does not start walking consistently until about 1800 sec-
onds. From 1750 seconds on there is again a gradual in-
crease in CO and gradual fall in TPR, though both level off.
When the subject begins to run on the treadmill around 2150
seconds, the CO rises much more significantly, reflecting the
increased metabolic demand. The TPR also falls much more
quickly, largely reflecting dilation of arterioles in the mus-
cles under local metabolic control, to increase blood flow
there. The heart rate rises more gradually than CO and peaks
several minutes into the exercise. It can be seen that the
ABP also rises somewhat, further enhancing perfusion to
the muscles. The CO and TPR are fairly noisy during this
stretch, probably due to the motion of the sensors during
running. Immediately after the subject stops running, heart
rate drops significantly, the CO drops by a small amount but
stays relatively elevated, the TPR rises very gradually, and
ABP shows a sharper rise. The interpretation of these post-
running transients is more subtle, as it involves the interac-
tion of several mechanisms (Costanzo 2010; Froelicher and
Myers 2006).

At 2700 seconds the subject begins simulated stair climb-
ing by stepping on and off the back of the treadmill. Though
the exercise appears to require a similar level of PA as the
jumping and walking, there is a larger increase in CO and a
sharper decrease in TPR than noted in those activities. Af-
terwards CO falls quickly and TPR rises close to the initial
baseline.

Figure 5 is a zoomed out look of the same data, show-
ing one whole set of activities and the start of the next set,
plotted over a window of approximately 75 minutes. The
sharp spikes in PA are the transitions, such as lying down or
standing up, between different positions. They require en-
ergy themselves, but the specific transition also is important
context. For example, after the first spike, the CO drops and
in the top plot it can be seen that the heart rate and mean
ABP have dropped significantly. Referring back to Figure 1,
this corresponds to lying down, at which point the need for
high mean ABP to work against gravity is reduced.

Clearly much remains to be understood about the physi-
ological responses, and what they tell us about the subject’s
health, in even relatively simple ambulatory settings, such as
those used in our experiments.

Discussion
Many challenges are presented in an outpatient monitoring
paradigm. An immediate one is noise and artifact. Physi-
cians are used to monitoring vital signs in a very controlled
environment, where a patient is likely inactive or following
the specific protocol of a stress test, under close supervi-
sion. Two approaches to improving robustness to noise and

Figure 5: The two plots here follow the same format as Fig-
ure 4 but show more data before and after.

artifact are better sensors and more accurate algorithms, in-
cluding algorithms for signal quality assessment. Even with
such improvements, it is unlikely that ambulatory monitor-
ing will ever have noise levels as low as monitoring in a
hospital setting.

Another challenge is the volume of data. Current sen-
sors allow us to easily record the ECG morphology of every
heart beat for many days, leading to a data record that can
no longer be inspected personally by a cardiologist. As new
sensors allow for simultaneously monitoring other quanti-
ties, such as blood pressure, new ways of analyzing and pre-
senting the data will have to be explored to make the data
useful. For example, clinicians usually take blood pressure
once during a visit, so the pulse pressure and mean pressure
for each of the approximately 100,000 heart beats in a day
might be of no immediate use for them. In our ambulatory
testing, we used known physiology to transform the large
volume of data into estimates of important and clinically ac-
tionable physiological quantities that are more informative
to track.

A third challenge is that of alarms and alerts, which are
the current usage model for most monitoring. The idea is to
use them for finding problems and warning clinicians. How-
ever, clinicians often end up ignoring them due to a high
false positive rate. To be effective, a monitor needs to catch
a problem before it gets out of control, and then the problem
must be effectively communicated to a physician.

Related to alerts is the issue of scoring for risk stratifi-
cation. In research settings, many heart health scores have
been proposed for risk stratification. Examples include max-
imum exercise capacity, heart rate variability (HRV), heart
rate recovery (HRR), and morphological variability (Malik
and Camm 1990; Cole et al. 1999; Myers et al. 2002;
Syed et al. 2009). Strong correlations have been demon-
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strated with mortality in these cases, but the underlying
mechanisms are generally still not well understood. The
prevailing theory is that HRV and HRR can be used to es-
timate the performance of the autonomic response system
(Schwartz and Ferrari 2010). Though HRV has been studied
for decades and has promise, it has not found its way into
the clinic. By reporting to physicians quantities that they are
familiar working with, they are much more likely to incor-
porate that data into their practice.

Conclusions
Up to this point wearable sensors have not made their way
into everyday medicine, but have vast potential. We have
presented results showing the possibility of estimating im-
portant quantities such as CO, TPR, and PA from data col-
lected with wearable and portable sensors. Though not
free of noise, the data shows clear patterns that can be ex-
plained by the underlying cardiovascular physiology. By us-
ing known physiology, we leverage the data we collect from
wearable sensors and produce estimates that can be clini-
cally relevant. We recognize the need for further develop-
ment in several areas of this research.
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