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Partial pressure, Section I

The ideal gas law states that at absolute temperature T the pressure P ex-
erted by n moles of an ideal gas confined to a volume V (hence at molar
concentration c = n/V ) is given by P = RTc, where R is the universal gas
constant (Boltzmann’s constant times Avogadro’s number). If this gas com-
prises multiple non-interacting species, where there are ni moles of species
i (with corresponding molar concentration ci = ni/V ), then the total pres-
sure P is the sum of the partial pressures Pi = RTci (this is Dalton’s law).
Thus, at a fixed T , the partial pressure of a component of a gaseous mixture
is proportional to its molar concentration in the mixture. Throughout the
paper, we quote the partial pressure of CO2 in units of mmHg (multiplying
by 0.133 gives the partial pressure in kilopascals or kPa).

The partial pressure of a gaseous species dissolved in a liquid (such as
CO2 dissolved in blood plasma) is defined via the partial pressure of the
species in a gas mixture contacting the liquid, with the gas and liquid con-
centrations in steady equilibrium. The concentration of the species in the
liquid is the product of this partial pressure and the solubility of the species
in the liquid.
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Diffusive “blurring” of the interface between alveolar gas and
inhaled air at commencement of exhalation, Section II.A

We can get an approximate sense of how — near the start of exhalation
— diffusion might “blur” whatever boundary may exist between CO2 -rich
alveolar gas and the previously inhaled atmospheric air (which is essentially
CO2 -free).

Consider the one-dimensional case of a cylinder containing alveolar gas
with CO2 at concentration pA on one side of a planar separator, and atmo-
spheric air with CO2 concentration 0 on the other. When the separating
boundary is removed at time t = 0, and in the absence of any convective
airflow, the CO2 will diffuse into the atmospheric air on the other side of the
boundary. (There is clearly convective flow during exhalation, but we ignore
it to simplify the calculation here, essentially considering the viewpoint of a
frame traveling with the boundary.)

At time t and a distance x into the side containing atmospheric air, the
CO2 concentration is given by

pA
2
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1− erf

x

2
√
Dt

)
,

where D is the diffusion coefficient for CO2 in atmospheric air (see for ex-
ample Eq. 2.13 in Random Walks in Biology by H.C. Berg, Princeton Uni-
versity Press, 1983). At body temperature, D ≈ 0.2 cm2/s, see for example
CRC Handbook of Chemistry and Physics Online (section on “Diffusion of
Gases”).

From tabulated values of the erf function, we see that when

x

2
√
Dt

= 1.6

the expression for the concentration becomes 0.012 pA. Solving the preceding
equation for x when t = 0.2 s — which Fig. 1 suggests is roughly the time
needed for the interface to reach VM and the CO2 concentration in VM to
start rising — we find x = 0.64 cm. Thus, at this distance from the original
boundary, and assuming no convective flow, the concentration has risen from
0 to only 1.2% of pA.

For comparison, from Table 3 of [22] (which was the reference for the
volumes VM and VL quoted in Fig. 2), we see that the nominal aggregate
length of the laminar-flow region (generations 6–16) is around 4.8 cm. This
suggests that the interface between alveolar gas and atmospheric air remains
reasonably well defined during its transit through the laminar-flow region
VL at the start of exhalation.
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Solution of (1) with input (3)

For a step-plus-exponential pA(V ) that starts at pM (VL), i.e.,

pA(V ) = pM (VL) +K1 +K2

(
1− e−

V −VL
ν

)
,

the analytical solution of (1) works out to be

pM (V ) = pM (VL) + (K1 +K2)−
(
K1 +K2

VM

VM − ν

)
e
−V −VL

VM

+K2
ν

VM − ν
e−

V −VL
ν .

The slope of this at V = VL is K1/VM .
The case considered in the paper is K1 = 0 and K2 = K. Having a

positive K1 allows a positive initial slope, which would be desirable since
the slope of Vcap at our p(VL) is indeed positive. However, the introduction
of a further parameter into the model could make the estimation less robust.
We leave exploration of this to future work.
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Solution of (6)

First-order linear time-variant state-space models have an explicit analytical
solution, though this is not generally the case for higher-order versions (see
Chapter 9 of Linear Systems, T. Kailath, Prentice-Hall 1980). It can be
directly verified that

pM (t) = e−w(t)

(
ew(0)pM (0) +

∫ t

0
ew(σ)ẇ(σ)pA(σ) dσ

)
satisfies (6) and evaluates to pM (0) at t = 0, as required.
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Solution of (9)

The solution of (9) is

w(t) = c1e
−τ+

√
τ2−4δτ

2δτ
t + c2e

−τ−
√

τ2−4δτ
2δτ

t + α .

The constants c1 and c2 are chosen such that this solution matches the given
initial conditions.

If we assume zero initial conditions, i.e., w(0) = 0 and ẇ(0) = 0, and if
δ ≪ τ , the analytical solution for normalized volume w(t) and airflow ẇ(t)
can be approximated as

w(t) ≈ δα

τ − δ
e−

t
δ − τα

τ − δ
e−

t
τ + α ,

ẇ(t) ≈ − α

τ − δ
e−

t
δ +

α

τ − δ
e−

t
τ .

Thus the fast transient is essentially governed by time-constant δ, and the
slow transient by time-constant τ .
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Fitting forced inhalations; estimating R and C, Section III.E

SM Fig. 1: Total insufflated volume Vins, i.e., integral of airflow, during the
transient before constant airflow −F sets in, for the same example as in Fig.
1.

SM Fig. 2: Airway pressure ramping up with slope F/C when airflow is
constant at −F , allowing determination of C — for the example in Fig. 1.
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Least-mean-square-error fit of sum of two exponentials to air-
way pressure during exhalation, Section IV.B

SM Fig. 3: Least-mean-square-error fit of sum of two exponentials to air-
way pressure during exhalation, for the example used in Fig. 1. The time
constant of the fast exponential is δ′(≈ δ), and that of the slow exponential
is τ ′(≈ τ).
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Performance of new Tcap-based test for COPD–CHF discrim-
ination, Section IV.C

The figures below relate to the experiments described in Section IV.C (see
captions for details).

SM Fig. 4: Accuracy distribution over 100 experiments with COPD–CHF
classification using our new Tcap-based test. In each experiment, we ran-
domly select 15 exhalations from each record in the trimmed test set, Section
III.A(2), and classify the record as COPD if u < 0.8 on at least 8 exhala-
tions, where u is the UEV1/TV ratio that we are using for classification.
Accuracies range from 74.1% to 86.2% (mean 80.6%, stdev 2.1%).
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SM Fig. 5: ROC curve for our new Tcap-based test acting on each record in
the full test set, Section III.A.(2). A record is classified as COPD if u < 0.8
on at least a fraction f of the exhalations, where u is the UEV1/TV ratio
that we are using for classification. The ROC curve is obtained by sweeping
f from 0 to 1. The area under the ROC curve (AUROC) is 0.84, and the
equal-error-rate is 77%, obtained for f = 0.2.
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Comparison of fits to Tcap and exhaled airflow using different
models, Section V

SM Fig. 6: Model fits to Tcap and exhaled airflow

We compare the fits to Tcap and to exhaled airflow (after shifting and
scaling), as in Fig. 5, for three models. The figure here shows these fits for
the example in Fig. 1. We quote below the rmse values averaged over all
available 310 exhalations:

Model 1: RLC with exponential pA(t), Tcap rmse 0.57mmHg (stdev
0.25mmHg), flow rmse 42mL/s (stdev 13mL/s).

Model 2: RLC with step pA(t), Tcap rmse 0.61mmHg, flow rmse
42mL/s.

Model 3: RC with step pA(t), Tcap rmse 1.13mmHg, flow rmse 79mL/s.

10



It is evident that the RLC Model 1, with the extra parameter ϵ governing
the exponential alveolar discharge in (7), provides a somewhat better Tcap
fit on average than the RLC Model 2, which has a step alveolar discharge,
while not adding much to the flow fit on average (though in the example of
SM Fig. 6 above, Model 1 does visibly better). On the other hand, the RC
Model 3 does substantially worse.
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